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INTRODUCTION 

Sensitivity analysis is fundamental to the solution of structural optimization problems. 
Consequently, much research has focused on the efficient computation of static displacement 
derivatives (Ref. 1). As originally developed, these methods relied on analytical 
representations for the derivatives of the structural stiffness matrix (K) with respect to the 
design variables (bj  ). To extend these methods for use with complex finite element 
formulations and facilitate their implementation into structural optimization programs (eg. Ref. 
2)  using general finite element analysis codes (Refs. 3-4), the semi-analytic method (Refs. 5-6) 
was developed. In this method we approximate the matrix dK/dbi by finite difference. 

Although it is well known that the accuracy of the semi-analytic method is dependent on 
the finite difference parameter, recent work (Ref. 7) has suggested that more fundamental 
inaccuracies exist in the method when used for shape optimization. Another study (Ref. 8) has 
argued qualitatively (for the case of a cantilevered beam) that these errors are related to non- 
uniform errors in the stiffness matrix derivatives. 

In the following we will investigate the accuracy of the semi-analytic method. We first 
develop a general framework for the error analysis and then show analytically that the errors in 
the method are entirely accounted for by errors in AK/Abi . Furthermore, we demonstrate that 
acceptable accuracy in the derivatives can be obtained through careful selection of the finite 
difference parameter. 

Static displacement derivatives: 

by finite differences In the semi-analytic method we approximate q =F 
to compute the approximation 

AK I d K  

= 7 du efficiently 

This gives the semi-analytic formula 1-1 ~ \ b  = -K -u =-K-'p which has 

been used successfully for sizing optimization. 

h Barthelemy & Haftka - demonstrated large errors for shape optimization 
Pedersen, Cheng, & Rasmussen - some analysis of these errors 

Figure 1 
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ACCURACY OF THE SEMI-ANALYTIC METHOD 

To characterize the errors associated with the semi-analytic method let us examine the 
expression for Au/Abj in terms of the approximate pseudo-load vector F? (see figure 2) and 

consider two cases. In both cases K is separated into two parts (K and K(bj )) which are 
independent of and dependent on the design variable bi , respectively. In the first case we can 
factor K(bi ) into a constant matrix K bj and a scalar function f (bi  ). As a result, the approximate 

pseudo-load vector is a simple scaling of the true pseudo-load vector p? and the semi- 

analytic method yields displacement derivatives which are scaled with respect to the analytic 
derivatives. In this case the accuracy of the derivative is only dependent on the accuracy of 

If, as is often the case, K(bj ) can not be factored as described above then the errors in the 
displacement derivatives may have a significantly different form. In this case the approximate 
pseudo-load vector is not a simple scaling of the true pseudo-load vector. Geometrically, this 
means that both the shape and length of the approximate pseudo-load vector may be incorrect. 
Also, since F? is a function of both the error matrix Ei and the displacement field, u, the 

accuracy of the derivatives may depend on the number of elements in the structural model and 
the location, within the model, of the element(s1 dependent on bj . 

A f l A b j .  

-1- AK Derivative given by - " =-K pis where Pi = T U  A bi 

K factorable in bi : K = K + f ( b  
bi 

~~ c Au 1 Thus the derivatives scale: = (1+ q ) ~  

K n o t  factorable in bi  : K= K + K(bi) 

s AK(bi) - 
P i -  Abi db 

I Derivatives do not scale: ~ \ b ,  A U  - - - K - * ( E ~ ~ )  1 
Figure 2 



EXAMPLE - CANTILEVERED BEAM 

Clearly, K %  may be factored for the sizing variables h and w but not 
for the shape variable I - 

To illustrate these ideas, consider a cantilevered beam modeled as an assemblage of 
beam type finite elements. The element level stiffness matrix for the n-th element is shown in 
figure 3. Clearly, K, (and thus K) is factorable for the element height ( h )  and width (w) 
variables but is not factorable for the length variable ( I ) .  Quantitatively then (based on our 
previous arguments) we expect the following when using the semi-analytic method: since w 
appears linearly, the derivatives of the displacements with respect to w will be exact and the 
relative error in the derivatives of the displacements with respect to h will be uniform and 
depend only on the accuracy of A h 3 / A h .  However, the relative error in the displacement 
derivatives with respect to I may be non-uniform and may depend on the number of elements 
used to model the beam as well as on the accuracy of AK/AI. To confirm this, we will now 
derive analytical expressions for the relative error in these displacement derivatives. 

Consider the finite element formulation for a beam element: 

r 6 -3 1, -6 -3 1, 1 
e 2 EI, 

K , = -  3 
1, 

3 
wn h n  where: In=- 12 
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ERROR ANALYSIS FOR THE CANTILEVERED BEAM 

Consider the initially uniform cantilevered beam of length L shown in figure 4. The 
beam has a rectangular cross section and is subject to concentrated force ( F )  and moment (M) 
loadings at the tip. In order to investigate the accuracy of the tip displacement derivatives we 
can derive analytical expressions for the semi-analytic derivatives and compare them to the 
known true derivatives (Ref. 9). We begin with the expressions for the displacements and 
rotations along the length of the beam as shown below. Now let the beam be composed of N 
elements of length I=L/N numbered from 1 to N, starting at the root. If the nodes are numbered 
from 0 to N, starting at the root, then the n-th node is located an x=nl.  Substituting for x in the 
equations for u and 8 yields a set of discretized equations for u and 8. To complete the 
derivation we need expressions for the entries of K-1 associated with the tip displacement d.0.f. 
and for the derivatives of the stiffness matrix with respect to the design variables b,. The 
stiffness matrix derivatives are easily derived from the expression for the element level stiffness 
matrix shown previously. The necessary entries of K-1 can be obtained by differentiating the 
displacement vector with respect to the applied force (F). Substitution of these expressions into 
the equation for the tip displacement derivative will yield the desired analytical expression for 
the semi-analytic derivative. 

We can determine analytical expressions for the errors introduced by finite 
differencing in the S-A method by using the exact beam element formulation. 

U 

Discretizing for a beam of N elements we can compute: 

Figure 4 



ERROR ANALYSIS FOR THE CANTILEVERED BEAM 

In figure 5 the expressions for the semi-analytic tip displacement derivatives with 
respect to the element heights and lengths (in terms of the exact derivatives) are shown. The 
expressions have been simplified to the case where F=O. For h, the stiffness matrix is factorable 
and, as was predicted, the relative error (E) depends only on the finite difference parameter (c) 
and is the same for all elements making up the beam. For the element lengths, K is not 
factorable and the relative error is non-uniform. In this case the relative error depends not only 
on c, but also on the element number (n) and the number of elements (N) used to model the 
beam. Increasing either n or N will cause the relative error to become larger, while decreasing 
the value of c will give better accuracy. In Refs. 7 and 8 the tip displacement derivatives with 
respect to L (Ad /AL)  are investigated. This quantity is based on perturbations of all elements 
in the beam such that the quantity AL is distributed evenly among all elements. In this case the 
relative error in Aut/AL is equivalent to the average error ( E ~ ~ ~ )  in Aut/Aln. For small values of 
c, is approximately proportional to CN 2. Note that, as would be expected, in all cases the 
relative error approaches zero as c approaches zero. 

Factorable sizing variable h : K= R + f ( h ’ ) ~  

1 Relative error is a function of c only: = (I+ 

Non-factorable shape variable I : K = K + KU,) 

Relative error is a function of C, n, and N : 
- gn1[ 2 N  -c2 ( 2  n - 2 N  -1) +c 0 2 n 3  -24 n2N -18 n 2 +  24&+ 8 n  -2 N + 1) 

= du’,+ ( E ( c .  n, N ) )  

A 1, 2 N (  c + D3 

2, 

I I AveraG error is a function of C, andN : 

I 5 2  l-c( N -2 -1 / N )  
= - l N  C c ( c , n , ~  = -1 

N n=l (c  + 1)’ 

Figure 5 
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COMPUTATIONAL RESULTS: SHAPE VARIABLES 

To demonstrate the analytical results presented previously the cantilevered beam was 
modeled with beam elements and the tip displacement derivatives with respect to the element 
lengths were calculated numerically via the semi-analytic method. In the figure below these 
derivatives (for c=.Ol) are plotted (normalized by the true derivative) versus the element 
number for four different beam discretizations (5,10,15 and 20 elements). The numerically 
generated data points are represented by the symbols shown on the plot. The analytic results 
appear as the underlying curves. Note that the computed values are in complete agreement 
with the analytic values. As predicted, the relative error depends on both n and N. For this 
problem, the error increases with N and increases as we move along the beam from the root to 
the tip. 

In figure 6 we also show the average error of the tip displacement derivatives, with 
respect to the element length, as a function of the number of elements in the beam. In this case 
the computed and predicted values are plotted for various values of c. In addition, the 
equivalent numerical data from Ref. 7 (represented by the square symbols) is also shown. 
Note, again, the excellent agreement between the computed and predicted errors. Clearly, the 
error decreases rapidly as c is decreased. For c=.OOOOl the average error is less than 1.0%. for 
N=20. 
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ERROR ANALYSIS FOR NON-PLANAR BEAM 

I We have seen that for the cantilevered beam problem uniform errors occur for the tip 
displacement derivatives with respect to sizing design variables and nonuniform errors occur 
for shape variables. However, our general error analysis predicts that the nature of the error 
depends on the factorability of K and not necessarily on the classification of the design variable. 
We will now show that nonuniform derivative errors can (and usually do) occur for sizing 

Consider the case of a rectangular cantilevered beam where the principal axes of the 
beam elements are oriented at some angle to the global coordinate system. In this case the 
stiffness matrix is not generally factorable for w and h since both variables contribute to the 
stiffnesses in the global coordinate system. As a result nonuniform error in the global 
displacement derivatives may occur. To investigate this analytically, consider the equivalent 
system shown in figure 7 where we want to calculate the derivative of the displacement at 
some angle 8 to the beam's principal axes (Adt /Abn) .  Using our previous analysis for 
displacement derivatives in the principal coordinate system we can develop the expression 
shown below for the relative error ( E ~ )  associated with Adt/Ab, (Ref.9). As shown, E~ is a 
function of the relative errors associated with the principal displacement derivatives Generally, 
they combine such that izn will differ for each element. Under certain conditions, however, 
uniform errors will occur. Clearly, this will be the case when 8 is some multiple of n/2. 
Uniform error will also occur when the loading in y and z directions are related by a scaling 
factor since the resulting displacements and displacement derivatives will also be simply 

I design variables. 

I 

~ 

~ scaled. 

Y 
For sizing variables: 

dU' 
Abn a n  

dV -(l+ &V)- 
Abn a n  

~- A u t  -(l+ e)- 
-- Av 

d t  = utcos e + v'sin e 

The relative error of the displacement derivative is given by : 

I Uniform error when e = in/2 or P ,  = yPy 

Non-uniform error otherwise 

Figure 7 
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NONUNIFORM ERRORS - SIZING VARIABLES 
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To numerically illustrate that nonuniform errors can occur for displacement derivatives 
with respect to sizing design variables we calculated the derivative of the tip displacement for a 
cantilevered beam with respect to the element heights using the semi-analytic method. The 
beam was rotated so that its principal axes were oriented at 45 degrees relative to the global 
coordinate system. A tip force and moment were applied parallel to the global axes. In figure 
8 the derivatives are plotted (normalized by the analytic derivatives) as a function of the 
element number for c=O.Ol and various beam discretizations (5,10,15 and 20 elements). As 
expected, the derivatives depend on the element number and the number of element used to 
model the beam. In this case the relative error decreases with increasing N and decreases as we 
move along the beam from the root to the tip. 

In figure 8 we also show the normalized tip displacement derivatives plotted versus the 
element number for N=20 and various values of c. Note that the relative error decreases 
rapidly as c is decreased. Also, the magnitudes of the errors are significantly less, for a given 
value of c, than we found for the derivatives with respect to the element lengths. For N=20, 
acceptable accuracy is obtained for values of c as large as 0.01. 
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ERROR ANALYSIS - AUTOMOTIVE FRAME 

To study the accuracy of the semi-analytic method for more practical problems, consider 
the half model of an idealized automobile frame structure shown in figure 9. The structural 
model consists of 33 three-dimensional beam-type finite elements each having a rectangular 
cross section. The structure is simply supported at the front suspension attachment points (A) 
and loaded in the vertical direction at the rear suspension attachment points (B). Boundary 
conditions are applied to the center line grid points to enforce an anti-symmetric structural 
response. The net effect of the loading and boundary conditions is to cause torsion of the 
structure about the centerline. In this case we calculated the semi-analytic derivatives of the 
vertical displacement at point C with respect to the thickness, width, height and length of each 
element in the structure and compared them against the analytic derivatives. In all cases the 
accuracy of the derivatives varies from element to element. The results of the comparison are 
summarized in the plot below. For each type of design variable (length, height, width and 
thickness) the minimum, maximum and average errors in semi-analytic derivatives are plotted 
as a function of the finite difference parameter (c). Note that each type of design variable 
exhibits a different level of accuracy, for a given value of c, with the length variable being the 
worst and thickness being the best. This can be attributed to the varying degrees of 
nonlinearity of the stiffness matrix with respect to these variables. For a thin walled box beam 
the section properties are nearly linear functions of t and therefore the accuracy of the 
displacement derivatives with respect to t is much better than that for b, h and 2. In general, the 
careful selection of design variables or other intermediate variables (e.g., beam section 
properties) for the derivative calculations will yield more accurate derivatives for any given 
value of c. 
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Figure 9 
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SUMMARY 

The inaccuracy of the semi-analytic method for computing static displacement 
derivatives for both shape and sizing design variables has been shown to be the result of errors 
in the pseudo load vectors. Two types of errors were identified. In the first case the errors in 
the finite difference approximation to the stiffness matrix derivatives resulted in a scaling of 
the pseudo load vector which, in turn, causes the derivatives to be uniformly scaled relative to 
their true values. In this case the magnitude of the error depends only on the finite difference 
parameter, c. In the second case, errors in the finite difference operation lead to a distortion of 
the pseudo load vectors and nonuniform errors in the displacement derivatives. These errors 
may be dependent on the location (within the structure) of the element($ associated with the 
design variable and the discretization of the structure, as well as c. 

The results of the error analysis were demonstrated numerically for a cantilevered beam 
and an idealized automobile frame structure. It was observed that for a given value of c that 
the errors in the derivatives for shape design variables were significantly larger than those for 
sizing variables. However, in both cases the relative errors could be adequately controlled 
through the proper choice of the finite difference parameter. It should be noted that relatively 
small values for c may be required to compute sufficiently accurate derivatives. This suggests 
that it may be necessary to compute the finite difference approximations to the stiffness matrix 
derivatives in double precision to avoid roundoff errors. Also, by carefully choosing 
intermediate variables which appear linearly (or nearly so) in the stiffness matrix, greater 
accuracy in the the finite difference approximation can be obtained. 

Errors reported for the semi-analytic method have been shown to 
be due to errors in the finite difference approximation of the 
stiff ness matrix derivatives 

We can adequately control errors by careful choice of the 
finite difference parameter 

I Errors may occur for both shape and sizing variables 
For a given value of the finite difference parameter, errors in 
the derivatives of the shape variables were larger than the 
sizing variables 

Figure 10 
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